Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 27(7): 1186-96, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27080005

RESUMO

Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantification of antisense oligonucleotides. Herein, mechanistic aspects of the fragmentation of tcDNA are discussed, which lay the basis for reliable sequencing and quantification of the antisense oligonucleotide. Excellent selectivity of tcDNA for complementary RNA is demonstrated in direct competition experiments. Moreover, the kinetic stability and fragmentation pattern of matched and mismatched tcDNA heteroduplexes were investigated and compared with non-modified DNA and RNA duplexes. Although the separation of the constituting strands is the entropy-favored fragmentation pathway of all nucleic acid duplexes, it was found to be only a minor pathway of tcDNA duplexes. The modified hybrid duplexes preferentially undergo neutral base loss and backbone cleavage. This difference is due to the low activation entropy for the strand dissociation of modified duplexes that arises from the conformational constraint of the tc-sugar-moiety. The low activation entropy results in a relatively high free activation enthalpy for the dissociation comparable to the free activation enthalpy of the alternative reaction pathway, the release of a nucleobase. The gas-phase behavior of tcDNA duplexes illustrates the impact of the activation entropy on the fragmentation kinetics and suggests that tandem mass spectrometric experiments are not suited to determine the relative stability of different types of nucleic acid duplexes. Graphical Abstract ᅟ.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Entropia , Cinética , RNA , Termodinâmica
2.
Nano Lett ; 15(7): 4364-73, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26042553

RESUMO

Antisense oligonucleotides (ASOs) have the potential to revolutionize medicine due to their ability to manipulate gene function for therapeutic purposes. ASOs are chemically modified and/or incorporated within nanoparticles to enhance their stability and cellular uptake, however, a major challenge is the poor understanding of their uptake mechanisms, which would facilitate improved ASO designs with enhanced activity and reduced toxicity. Here, we study the uptake mechanism of three therapeutically relevant ASOs (peptide-conjugated phosphorodiamidate morpholino (PPMO), 2'Omethyl phosphorothioate (2'OMe), and phosphorothioated tricyclo DNA (tcDNA) that have been optimized to induce exon skipping in models of Duchenne muscular dystrophy (DMD). We show that PPMO and tcDNA have high propensity to spontaneously self-assemble into nanoparticles. PPMO forms micelles of defined size and their net charge (zeta potential) is dependent on the medium and concentration. In biomimetic conditions and at low concentrations, PPMO obtains net negative charge and its uptake is mediated by class A scavenger receptor subtypes (SCARAs) as shown by competitive inhibition and RNAi silencing experiments in vitro. In vivo, the activity of PPMO was significantly decreased in SCARA1 knockout mice compared to wild-type animals. Additionally, we show that SCARA1 is involved in the uptake of tcDNA and 2'OMe as shown by competitive inhibition and colocalization experiments. Surface plasmon resonance binding analysis to SCARA1 demonstrated that PPMO and tcDNA have higher binding profiles to the receptor compared to 2'OMe. These results demonstrate receptor-mediated uptake for a range of therapeutic ASO chemistries, a mechanism that is dependent on their self-assembly into nanoparticles.


Assuntos
Nanopartículas/química , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacocinética , Receptores Depuradores Classe A/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Éxons , Terapia Genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Micelas , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Receptores Depuradores Classe A/genética
3.
Nat Med ; 21(3): 270-5, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25642938

RESUMO

Antisense oligonucleotides (AONs) hold promise for therapeutic correction of many genetic diseases via exon skipping, and the first AON-based drugs have entered clinical trials for neuromuscular disorders. However, despite advances in AON chemistry and design, systemic use of AONs is limited because of poor tissue uptake, and recent clinical reports confirm that sufficient therapeutic efficacy has not yet been achieved. Here we present a new class of AONs made of tricyclo-DNA (tcDNA), which displays unique pharmacological properties and unprecedented uptake by many tissues after systemic administration. We demonstrate these properties in two mouse models of Duchenne muscular dystrophy (DMD), a neurogenetic disease typically caused by frame-shifting deletions or nonsense mutations in the gene encoding dystrophin and characterized by progressive muscle weakness, cardiomyopathy, respiratory failure and neurocognitive impairment. Although current naked AONs do not enter the heart or cross the blood-brain barrier to any substantial extent, we show that systemic delivery of tcDNA-AONs promotes a high degree of rescue of dystrophin expression in skeletal muscles, the heart and, to a lesser extent, the brain. Our results demonstrate for the first time a physiological improvement of cardio-respiratory functions and a correction of behavioral features in DMD model mice. This makes tcDNA-AON chemistry particularly attractive as a potential future therapy for patients with DMD and other neuromuscular disorders or with other diseases that are eligible for exon-skipping approaches requiring whole-body treatment.


Assuntos
Distrofina/efeitos dos fármacos , Coração/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular de Duchenne , Nanopartículas , Oligodesoxirribonucleotídeos Antissenso/farmacologia , RNA Mensageiro/análise , Animais , Barreira Hematoencefálica/metabolismo , Códon sem Sentido , Modelos Animais de Doenças , Distrofina/genética , Éxons , Terapia Genética , Camundongos , Microscopia Eletrônica de Transmissão , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Oligodesoxirribonucleotídeos Antissenso/metabolismo , Transcriptoma/efeitos dos fármacos
4.
Beilstein J Org Chem ; 10: 1840-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25161745

RESUMO

We present the synthesis of the two novel nucleosides iso-tc-T and bc(en)-T, belonging to the bicyclo-/tricyclo-DNA molecular platform. In both modifications the torsion around C6'-C7' within the carbocyclic ring is planarized by either the presence of a C6'-C7' double bond or a cyclopropane ring. Structural analysis of these two nucleosides by X-ray analysis reveals a clear preference of torsion angle γ for the gauche orientation with the furanose ring in a near perfect 2'-endo conformation. Both modifications were incorporated into oligodeoxynucleotides and their thermal melting behavior with DNA and RNA as complements was assessed. We found that the iso-tc-T modification was significantly more destabilizing in duplex formation compared to the bc(en)-T modification. In addition, duplexes with complementary RNA were less stable as compared to duplexes with DNA as complement. A structure/affinity analysis, including the already known bc-T and tc-T modifications, does not lead to a clear correlation of the orientation of torsion angle γ with DNA or RNA affinity. There is, however, some correlation between furanose conformation (N- or S-type) and affinity in the sense that a preference for a 3'-endo like conformation is associated with a preference for RNA as complement. As a general rule it appears that T m data of single modifications with nucleosides of the bicyclo-/tricyclo-DNA platform within deoxyoligonucleotides are not predictive for the stability of fully modified oligonucleotides.

5.
J Org Chem ; 79(3): 1271-9, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24422513

RESUMO

The synthesis of a novel bicyclic thymidine analogue carrying a ß-fluoro substituent at C6' (6'F-bcT) has been achieved. Key steps of the synthesis were an electrophilic fluorination/stereospecific hydrogenation sequence of a bicyclo sugar intermediate, followed by an N-iodo-succinimide-induced stereoselective nucleosidation. A corresponding phosphoramidite building block was then prepared and used for oligonucleotide synthesis. Tm measurements of oligonucleotides with single and double incorporations showed a remarkable stabilization of duplex formation particularly with RNA as complement without compromising pairing selectivity. Increases in Tm were in the range of +1­2 °C compared to thymidine and +1­3 °C compared to a standard bc-T residue. Structural investigations of the 6'F-bcT nucleoside by X-ray crystallography showed an in-line arrangement of the fluorine substituent with H6 of thymine, however, with a distance that is relatively long for a nonclassical CF­HC hydrogen bond. In contrast, structural investigations in solution by 1H and 13C NMR clearly showed scalar coupling of fluorine with H6 and C6 of the nucleobase, indicating the existence of at least weak electrostatic interactions. On the basis of these results, we put forward the hypothesis that these weak CF­HC6 electrostatic interactions increase duplex stability by orienting and partially freezing torsion angle χ of the 6'F-bcT nucleoside.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , DNA/química , Nucleosídeos/química , Oligonucleotídeos/química , RNA Complementar/química , Timidina/análogos & derivados , Timidina/química , Pareamento de Bases , Cristalografia por Raios X , Ligação de Hidrogênio , Hidrogenação , Espectroscopia de Ressonância Magnética , Eletricidade Estática , Termodinâmica
6.
J Enzyme Inhib Med Chem ; 25(2): 250-65, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20222764

RESUMO

Recently, the three-dimensional structure of the active site of human DNA polymerase alpha (pol alpha) was proposed based on the application of molecular modeling methods and molecular dynamic simulations. The modeled structure of the enzyme was used for docking selective inhibitors (nucleotide analogs and the non-nucleoside inhibitor aphidicolin) in its active site in order to design new drugs for actinic keratosis and squamous cell carcinoma (SCC). The resulting complexes explained the geometrical and physicochemical interactions of the inhibitors with the amino acid residues involved in binding to the catalytic site, and offered insight into the experimentally derived binding data. The proposed structures were synthesized and tested in vitro for their influence on human keratinocytes and relevant tumor cell lines. Effects were compared to aphidicolin which inhibits pol alpha in a non-competitive manner, as well as to diclofenac and 5-fluorouracil, both approved for therapy of actinic keratosis. Here we describe three new nucleoside analogs inhibiting keratinocyte proliferation by inhibiting DNA synthesis and inducing apoptosis and necrosis. Thus, the combination of modeling studies and in vitro tests should allow the derivation of new drug candidates for the therapy of skin tumors, given that the agents are not relevant substrates of nucleotide transporters expressed by skin cancer cells. Kinases for nucleoside activation were detected, too, corresponding with the observed effects of nucleoside analogs.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , DNA Polimerase I/antagonistas & inibidores , Ceratose Actínica/tratamento farmacológico , Modelos Químicos , Modelos Moleculares , Inibidores da Síntese de Ácido Nucleico , Neoplasias Cutâneas/tratamento farmacológico , Afidicolina/química , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/enzimologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Polimerase I/química , DNA Polimerase I/metabolismo , Humanos , Queratinócitos , Ceratose Actínica/enzimologia , Necrose , Inibidores da Síntese de Ácido Nucleico/síntese química , Inibidores da Síntese de Ácido Nucleico/química , Inibidores da Síntese de Ácido Nucleico/farmacologia , Proteínas de Transporte de Nucleotídeos/genética , Proteínas de Transporte de Nucleotídeos/metabolismo , Ligação Proteica , Purinas/química , Neoplasias Cutâneas/enzimologia , Timidina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...